An invariant upperbound for the GNSS bootstrappend ambiguity success-rate
نویسنده
چکیده
Carrier phase ambiguity resolution is the key to fast and high precision GPS positioning. Critical in the application of ambiguity resolution is the quality of the computed integer ambiguities. Unsuccessful ambiguity resolution, when passed unnoticed, will too often lead to unacceptable errors in the positioning results. The success or failure of carrier phase ambiguity resolution can be predicted by means of the probability of correct integer estimation, also referred to as the ambiguity success-rate. Upperbounds of the success-rate can be used to decide that ambiguity resolution has become unreliable. In this contribution we prove an upperbound for the bootstrapped success-rate. The upperbound is easy to compute and it is invariant for the class of admissible ambiguity transformations.
منابع مشابه
Influence of ambiguity precision on the success rate of GNSS integer ambiguity bootstrapping
In this contribution, we study the dependence of the bootstrapped success rate on the precision of the GNSS carrier phase ambiguities. Integer bootstrapping is, because of its ease of computation, a popular method for resolving the integer ambiguities. The method is however known to be suboptimal, because it only takes part of the information from the ambiguity variance matrix into account. Thi...
متن کاملGNSS Integer Ambiguity Estimation and Evaluation: LAMBDA and Ps-LAMBDA
Successful integer carrier-phase ambiguity resolution is crucial for high precision GNSS applications. It includes both integer estimation and evaluation. For integer estimation, the LAMBDA method has been applied in a wide variety of GNSS applications. The method’s popularity stems from its numerical efficiency and statistical optimality. However, before conducting ambiguity resolution, one ne...
متن کاملRotation Matrix Method Based on Ambiguity Function for GNSS Attitude Determination
Global navigation satellite systems (GNSS) are well suited for attitude determination. In this study, we use the rotation matrix method to resolve the attitude angle. This method achieves better performance in reducing computational complexity and selecting satellites. The condition of the baseline length is combined with the ambiguity function method (AFM) to search for integer ambiguity, and ...
متن کاملPs-LAMBDA: Ambiguity success rate evaluation software for interferometric applications
Integer ambiguity resolution is the process of estimating the unknown ambiguities of carrier-phase observables as integers. It applies to a wide range of interferometric applications of which Global Navigation Satellite System (GNSS) precise positioning is a prominent example. GNSS precise positioning can be accomplished anytime and anywhere on Earth, provided that the integer ambiguities of th...
متن کاملThe affine constrained GNSS attitude model and its multivariate integer least-squares solution
A new global navigation satellite system (GNSS) carrier-phase attitude model and its solution are introduced in this contribution. This affine-constrained GNSS attitude model has the advantage that it avoids the computational complexity of the orthonormality-constrained GNSS attitude model, while it still has a significantly improved ambiguity resolution performance over its unconstrained count...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003